Structured Cabling

Structured cabling is building or campus telecommunications cabling infrastructure that consists of a number of standardized smaller elements (hence structured) called subsystems.

Structured Cabling falls into five subsystems:

• Demarcation Point – the point where the telephone company network ends and connects with the on-premises wiring at the customer premises

• Equipment or Telecommunications Rooms – house equipment and wiring consolidation points that serve the users inside the building or campus

• Vertical or Riser Cabling – connects between the equipment/telecommunications rooms, so named because the rooms are typically on different floors

• Horizontal wiring – can be IW (inside wiring) or Plenum Cabling and connects telecommunications rooms to individual outlets or work areas on the floor, usually through the wireways, conduits or ceiling spaces of each floor

• Work-Area Components – connect end-user equipment to outlets of the horizontal cabling system.

Overview:
Structured cabling design and installation is governed by a set of standards that specify wiring data centers, offices, and apartment buildings for data or voice communications using various kinds of cable, most commonly Category 5e (CAT-5e) Copper, Category 6e (CAT-6e) Copper, and Fiber Optic Cabling and Modular Connectors. These standards define how to lay the cabling in various topologies in order to meet the needs of the customer, typically using a central patch panel (which is normally 19 inch rack-mounted), from where each modular connection can be used as needed. Each outlet is then patched into a network switch (normally also rack-mounted) for network use or into an IP or PBX (private branch exchange) telephone system patch panel.

Lines patched as data ports into a network switch require simple straight-through patch cables at each end to connect a computer.

It is common to color code patch panel cables to identify the type of connection, though structured cabling standards do not require it except in the demarcation wall field.

Cabling standards demand that all eight conductors in Cat5/5e/6/6e cable are connected, resisting the temptation to ‘double-up’ or use one cable for both voice and data. IP phone systems, however, can run the telephone and the computer on the same wires.

Standards:
Network cabling standards are used internationally and are published by ISO/IEC, CENELEC and the Telecommunications Industry Association (TIA). Building Industry Consulting Service International is a recognized independent trainer of structured cabling installers with manufacturer independent design and installation best practice documents, it also plays a major role along with industry leaders in developing and designing the US standards:

• ANSI/TIA-568-C.0 – Generic Telecommunications Cabling for Customer Premises, 2009
• ANSI/TIA-568-C.1 – Commercial Building Telecommunications Cabling Standard, 2009
• ANSI/TIA-568-C.2 – Balanced Twisted-Pair Telecommunication Cabling and Components Standard, published 2009
• ANSI/TIA-568-C.3 – Optical Fiber Cabling Components Standard, published 2008, plus errata issued in October, 2008.
• TIA-569-B (2004; Amd 1 2009) – Commercial Building Standard for Telecommunications Pathways and Spaces
• ANSI/TIA/EIA-606-A-2002 – Administration Standard for Commercial Telecommunications Infrastructure.

About ECS
ECS, located in Auburn, WA & Portland, OR is a team of experts ready to help businesses with the important and often complicated decision of finding the best communication solutions for their company, from voice to data. Servicing Washington & Oregon, ECS is a “one stop shop” for network infrastructure needs. ECS designs & installs flexible cabling infrastructures that support multiple voice, data, video and multimedia systems regardless of their manufacturer.

Comments are closed.